(Ended)
Q1.
Let
and
be real numbers that satisfy the system of equations

There exist relatively prime positive integers
and
such that
![]()
Find
.
Q2.
Equilateral triangle
has side length
. Point
lies on the same side of line
as
such that
. The line
through
parallel to line
intersects sides
and
at points
and
, respectively. Point
lies on
such that
is between
and
,
is isosceles, and the ratio of the area of
to the area of
is
. Find
.
![[asy] pair A,B,C,D,E,F,G; B=origin; A=5*dir(60); C=(5,0); E=0.6*A+0.4*B; F=0.6*A+0.4*C; G=rotate(240,F)*A; D=extension(E,F,B,dir(90)); draw(D--G--A,grey); draw(B--0.5*A+rotate(60,B)*A*0.5,grey); draw(A--B--C--cycle,linewidth(1.5)); dot(A^^B^^C^^D^^E^^F^^G); label("$A$",A,dir(90)); label("$B$",B,dir(225)); label("$C$",C,dir(-45)); label("$D$",D,dir(180)); label("$E$",E,dir(-45)); label("$F$",F,dir(225)); label("$G$",G,dir(0)); label("$\ell$",midpoint(E--F),dir(90)); [/asy]](https://latex.artofproblemsolving.com/7/1/5/7154e7a32b3eda0a8ba22787a8b4d10ba8b8dc50.png)
Q3.
Find the arithmetic mean of all the three-digit palindromes. (Recall that a palindrome is a number that reads the same forward and backward, such as
or
.)
Q4.
In the accompanying figure, the outer square
has side length
. A second square
of side length
is constructed inside
with the same center as
and with sides parallel to those of
. From each midpoint of a side of
, segments are drawn to the two closest vertices of
. The result is a four-pointed starlike figure inscribed in
. The star figure is cut out and then folded to form a pyramid with base
. Find the volume of this pyramid.
![[asy] pair S1 = (20, 20), S2 = (-20, 20), S3 = (-20, -20), S4 = (20, -20); pair M1 = (S1+S2)/2, M2 = (S2+S3)/2, M3=(S3+S4)/2, M4=(S4+S1)/2; pair Sp1 = (7.5, 7.5), Sp2=(-7.5, 7.5), Sp3 = (-7.5, -7.5), Sp4 = (7.5, -7.5); draw(S1--S2--S3--S4--cycle); draw(Sp1--Sp2--Sp3--Sp4--cycle); draw(Sp1--M1--Sp2--M2--Sp3--M3--Sp4--M4--cycle); [/asy]](https://latex.artofproblemsolving.com/2/8/6/2862b9fac9f2c88c10b30e3908cf4ac1d5f62115.png)