Weekly Contest #98

(Ended)

Standings

Q1.

A triangle has angles of $30^\circ$ and $45^\circ$. If the side opposite the $45^\circ$ angle has length $8$, then the side opposite the $30^\circ$ angle has length

$\textbf{(A) }4\qquad \textbf{(B) }4\sqrt{2}\qquad \textbf{(C) }4\sqrt{3}\qquad \textbf{(D) }4\sqrt{6}\qquad  \textbf{(E) }6$

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Trigonometry

Q2.

Let $\omega = \cos\frac{2\pi}{7} + i \cdot \sin\frac{2\pi}{7},$ where $i = \sqrt{-1}.$ Find the value of the product\[\prod_{k=0}^6 \left(\omega^{3k} + \omega^k + 1\right).\]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra

Q3.

Consider the L-shaped region formed by three unit squares joined at their sides, as shown below. Two points $A$ and $B$ are chosen independently and uniformly at random from inside the region. The probability that the midpoint of $\overline{AB}$ also lies inside this L-shaped region can be expressed as $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

[asy] unitsize(2cm); draw((0,0)--(2,0)--(2,1)--(1,1)--(1,2)--(0,2)--cycle); draw((0,1)--(1,1)--(1,0),dashed); [/asy]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Probability

Q4.

A cube-shaped container has vertices $A,$ $B,$ $C,$ and $D,$ where $\overline{AB}$ and $\overline{CD}$ are parallel edges of the cube, and $\overline{AC}$ and $\overline{BD}$ are diagonals of faces of the cube, as shown. Vertex $A$ of the cube is set on a horizontal plane $\mathcal{P}$ so that the plane of the rectangle $ABDC$ is perpendicular to $\mathcal{P},$ vertex $B$ is $2$ meters above $\mathcal{P},$ vertex $C$ is $8$ meters above $\mathcal{P},$ and vertex $D$ is $10$ meters above $\mathcal{P}.$ The cube contains water whose surface is parallel to $\mathcal{P}$ at a height of $7$ meters above $\mathcal{P}.$ The volume of water is $\frac{m}{n}$ cubic meters, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Geometry