Weekly Contest #43

(Ended)

Standings

Q1.

If $m$ and $n$ are the roots of $x^2+mx+n=0 ,m \ne 0,n \ne 0$, then the sum of the roots is:

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra

Q2.

If the arithmetic mean of $a$ and $b$ is double their geometric mean, with $a>b>0$, then a possible value for the ratio $a/b$, to the nearest integer, is:

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Geometry

Q3.

Find the largest possible real part of

\[(75+117i)z+\frac{96+144i}{z}\]

where $z$ is a complex number with $|z|=4$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra

Q4.

Let $ABCD$ be a tetrahedron such that $AB=CD= \sqrt{41}$$AC=BD= \sqrt{80}$, and $BC=AD= \sqrt{89}$. There exists a point $I$ inside the tetrahedron such that the distances from $I$ to each of the faces of the tetrahedron are all equal. This distance can be written in the form $\frac{m \sqrt n}{p}$, where $m$$n$, and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime. Find $m+n+p$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Geometry