Weekly Contest #55

(Ended)

Standings

Q1.

A cubical cake with edge length $2$ inches is iced on the sides and the top. It is cut vertically into three pieces as shown in this top view, where $M$ is the midpoint of a top edge. The piece whose top is triangle $B$ contains $c$ cubic inches of cake and $s$ square inches of icing. What is $c+s$?

[asy] unitsize(1cm); defaultpen(linewidth(.8pt)+fontsize(8pt));  draw((-1,-1)--(1,-1)--(1,1)--(-1,1)--cycle); draw((1,1)--(-1,0)); pair P=foot((1,-1),(1,1),(-1,0)); draw((1,-1)--P); draw(rightanglemark((-1,0),P,(1,-1),4));  label("$M$",(-1,0),W); label("$C$",(-0.1,-0.3)); label("$A$",(-0.4,0.7)); label("$B$",(0.7,0.4)); [/asy]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Geometry Probability

Q2.

Rachel and Robert run on a circular track. Rachel runs counterclockwise and completes a lap every 90 seconds, and Robert runs clockwise and completes a lap every 80 seconds. Both start from the same line at the same time. At some random time between 10 minutes and 11 minutes after they begin to run, a photographer standing inside the track takes a picture that shows one-fourth of the track, centered on the starting line. What is the probability that both Rachel and Robert are in the picture?

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Probability

Q3.

A rectangular yard contains two flower beds in the shape of congruent isosceles right triangles. The remainder of the yard has a trapezoidal shape, as shown. The parallel sides of the trapezoid have lengths $15$ and $25$ meters. What fraction of the yard is occupied by the flower beds?

[asy] unitsize(2mm); defaultpen(linewidth(.8pt));  fill((0,0)--(0,5)--(5,5)--cycle,gray); fill((25,0)--(25,5)--(20,5)--cycle,gray); draw((0,0)--(0,5)--(25,5)--(25,0)--cycle); draw((0,0)--(5,5)); draw((20,5)--(25,0)); [/asy]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Probability

Q4.

Let $k={2008}^{2}+{2}^{2008}$. What is the units digit of $k^2+2^k$?

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Probability