Weekly Contest #68

(Ended)

Standings

Q1.

Let $N$ denote the number of ordered triples of positive integers $(a, b, c)$ such that $a, b, c \leq 3^6$ and $a^3 + b^3 + c^3$ is a multiple of $3^7$. Find the remainder when $N$ is divided by $1000$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Combinatorics

Q2.

The set of points in $3$-dimensional coordinate space that lie in the plane $x+y+z=75$ whose coordinates satisfy the inequalities\[x-yz<y-zx<z-xy\]forms three disjoint convex regions. Exactly one of those regions has finite area. The area of this finite region can be expressed in the form $a\sqrt{b},$ where $a$ and $b$ are positive integers and $b$ is not divisible by the square of any prime. Find $a+b.$

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Geometry

Q3.

Let $k$ be a real number such that the system

                                                                |25+20i−z|=5

                                                             |z−4−k|=|z−3i−k|

has exactly one complex solution $z$. The sum of all possible values of $k$ can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. Here $i = \sqrt{-1}$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Geometry

Q4.

The twelve letters $A$,$B$,$C$,$D$,$E$,$F$,$G$,$H$,$I$,$J$,$K$, and $L$ are randomly grouped into six pairs of letters. The two letters in each pair are placed next to each other in alphabetical order to form six two-letter words, and then those six words are listed alphabetically. For example, a possible result is $AB$$CJ$$DG$$EK$$FL$$HI$. The probability that the last word listed contains $G$ is $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Combinatorics Probability