Weekly Contest #72

(Ended)

Standings

Q1.

 

The roots of $x^3 + 2x^2 - x + 3$ are $p, q,$ and $r.$ What is the value of

\[(p^2 + 4)(q^2 + 4)(r^2 + 4)?\]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra

Q2.

On top of a rectangular card with sides of length $1$ and $2+\sqrt{3}$, an identical card is placed so that two of their diagonals line up, as shown ($\overline{AC}$, in this case).

[asy] defaultpen(fontsize(12)+0.85); size(150); real h=2.25; pair C=origin,B=(0,h),A=(1,h),D=(1,0),Dp=reflect(A,C)*D,Bp=reflect(A,C)*B; pair L=extension(A,Dp,B,C),R=extension(Bp,C,A,D); draw(L--B--A--Dp--C--Bp--A); draw(C--D--R); draw(L--C^^R--A,dashed+0.6); draw(A--C,black+0.6); dot("$C$",C,2*dir(C-R)); dot("$A$",A,1.5*dir(A-L)); dot("$B$",B,dir(B-R)); [/asy]

Continue the process, adding a third card to the second, and so on, lining up successive diagonals after rotating clockwise. In total, how many cards must be used until a vertex of a new card lands exactly on the vertex labeled $B$ in the figure?

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Geometry

Q3.

A set of $12$ tokens — $3$ red, $2$ white, $1$ blue, and $6$ black — is to be distributed at random to $3$ game players, $4$ tokens per player. The probability that some player gets all the red tokens, another gets all the white tokens, and the remaining player gets the blue token can be written as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Combinatorics Probability

Q4.

 

The numbers, in order, of each row and the numbers, in order, of each column of a $5 \times 5$ array of integers form an arithmetic progression of length $5{.}$The numbers in positions $(5, 5), \,(2,4),\,(4,3),$ and $(3, 1)$ are $0, 48, 16,$ and $12{,}$ respectively. What number is in position $(1, 2)?$

\[\begin{bmatrix} . & ? &.&.&. \\ .&.&.&48&.\\ 12&.&.&.&.\\ .&.&16&.&.\\ .&.&.&.&0\end{bmatrix}\]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra

Q5.

In $\Delta ABC$$\angle ABC = 90^\circ$ and $BA = BC = \sqrt{2}$. Points $P_1, P_2, \dots, P_{2024}$ lie on hypotenuse $\overline{AC}$ so that $AP_1= P_1P_2 = P_2P_3 = \dots = P_{2023}P_{2024} = P_{2024}C$. What is the length of the vector sum\[\overrightarrow{BP_1} + \overrightarrow{BP_2} + \overrightarrow{BP_3} + \dots + \overrightarrow{BP_{2024}}?\]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Geometry