(Ended)
Q1.
An ant makes a sequence of moves on a cube where a move consists of walking from one vertex to an adjacent vertex along an edge of the cube. Initially the ant is at a vertex of the bottom face of the cube and chooses one of the three adjacent vertices to move to as its first move. For all moves after the first move, the ant does not return to its previous vertex, but chooses to move to one of the other two adjacent vertices. All choices are selected at random so that each of the possible moves is equally likely. The probability that after exactly
moves that ant is at a vertex of the top face on the cube is
, where
and
are relatively prime positive integers. Find ![]()
Q2.
For positive real numbers
, let
denote the set of all obtuse triangles that have area
and two sides with lengths
and
. The set of all
for which
is nonempty, but all triangles in
are congruent, is an interval
. Find
.
Q3.
Find the number of permutations
of numbers
such that the sum of five products
is divisible by
.
Q4.
Equilateral triangle
has side length
. Point
lies on the same side of line
as
such that
. The line
through
parallel to line
intersects sides
and
at points
and
, respectively. Point
lies on
such that
is between
and
,
is isosceles, and the ratio of the area of
to the area of
is
. Find
.![[asy] pair A,B,C,D,E,F,G; B=origin; A=5*dir(60); C=(5,0); E=0.6*A+0.4*B; F=0.6*A+0.4*C; G=rotate(240,F)*A; D=extension(E,F,B,dir(90)); draw(D--G--A,grey); draw(B--0.5*A+rotate(60,B)*A*0.5,grey); draw(A--B--C--cycle,linewidth(1.5)); dot(A^^B^^C^^D^^E^^F^^G); label("$A$",A,dir(90)); label("$B$",B,dir(225)); label("$C$",C,dir(-45)); label("$D$",D,dir(180)); label("$E$",E,dir(-45)); label("$F$",F,dir(225)); label("$G$",G,dir(0)); label("$\ell$",midpoint(E--F),dir(90)); [/asy]](https://latex.artofproblemsolving.com/7/1/5/7154e7a32b3eda0a8ba22787a8b4d10ba8b8dc50.png)
Q5.
Find the arithmetic mean of all the three-digit palindromes. (Recall that a palindrome is a number that reads the same forward and backward, such as
or
.)