(Ended)
Q1.
A piecewise linear function is defined by
and
for all real numbers
. The graph of
has the sawtooth pattern depicted below.
![[asy] import graph; size(300); Label f; f.p=fontsize(6); yaxis(-2,2,Ticks(f, 2.0)); xaxis(-6.5,6.5,Ticks(f, 2.0)); draw((0, 0)..(1/4,sqrt(1/136))..(1/2,sqrt(1/68))..(0.75,sqrt(0.75/34))..(1, sqrt(1/34))..(2, sqrt(2/34))..(3, sqrt(3/34))..(4, sqrt(4/34))..(5, sqrt(5/34))..(6, sqrt(6/34))..(7, sqrt(7/34))..(8, sqrt(8/34)), red); draw((0, 0)..(1/4,-sqrt(1/136))..(0.5,-sqrt(1/68))..(0.75,-sqrt(0.75/34))..(1, -sqrt(1/34))..(2, -sqrt(2/34))..(3, -sqrt(3/34))..(4, -sqrt(4/34))..(5, -sqrt(5/34))..(6, -sqrt(6/34))..(7, -sqrt(7/34))..(8, -sqrt(8/34)), red); draw((-7,0)--(7,0), black+0.8bp); draw((0,-2.2)--(0,2.2), black+0.8bp); draw((-6,-0.1)--(-6,0.1), black); draw((-4,-0.1)--(-4,0.1), black); draw((-2,-0.1)--(-2,0.1), black); draw((0,-0.1)--(0,0.1), black); draw((2,-0.1)--(2,0.1), black); draw((4,-0.1)--(4,0.1), black); draw((6,-0.1)--(6,0.1), black); draw((-7,1)..(-5,-1), blue); draw((-5,-1)--(-3,1), blue); draw((-3,1)--(-1,-1), blue); draw((-1,-1)--(1,1), blue); draw((1,1)--(3,-1), blue); draw((3,-1)--(5,1), blue); draw((5,1)--(7,-1), blue); [/asy]](https://latex.artofproblemsolving.com/1/2/e/12eaae0d7d3e6127a4d0af7dc27fd14c3197a740.png)
The parabola
intersects the graph of
at finitely many points. The sum of the
-coordinates of all these intersection points can be expressed in the form
, where
,
,
, and
are positive integers such that
,
,
have greatest common divisor equal to
, and
is not divisible by the square of any prime. Find
.
Q2.
The
cells of a
grid are filled in using the numbers
through
so that each row contains
different numbers, and each of the three
blocks heavily outlined in the example below contains
different numbers, as in the first three rows of a Sudoku puzzle.
![[asy] unitsize(20); add(grid(9,3)); draw((0,0)--(9,0)--(9,3)--(0,3)--cycle, linewidth(2)); draw((3,0)--(3,3), linewidth(2)); draw((6,0)--(6,3), linewidth(2)); real a = 0.5; label("5",(a,a)); label("6",(1+a,a)); label("1",(2+a,a)); label("8",(3+a,a)); label("4",(4+a,a)); label("7",(5+a,a)); label("9",(6+a,a)); label("2",(7+a,a)); label("3",(8+a,a)); label("3",(a,1+a)); label("7",(1+a,1+a)); label("9",(2+a,1+a)); label("5",(3+a,1+a)); label("2",(4+a,1+a)); label("1",(5+a,1+a)); label("6",(6+a,1+a)); label("8",(7+a,1+a)); label("4",(8+a,1+a)); label("4",(a,2+a)); label("2",(1+a,2+a)); label("8",(2+a,2+a)); label("9",(3+a,2+a)); label("6",(4+a,2+a)); label("3",(5+a,2+a)); label("1",(6+a,2+a)); label("7",(7+a,2+a)); label("5",(8+a,2+a)); [/asy]](https://latex.artofproblemsolving.com/d/f/3/df3daade257e4001f968e9c379a01ae9c94e8883.png)
The number of different ways to fill such a grid can be written as
where
,
,
, and
are distinct prime numbers and
,
,
,
are positive integers. Find
.
Q3.
The parabola with equation
is rotated
counterclockwise around the origin. The unique point in the fourth quadrant where the original parabola and its image intersect has
-coordinate
, where
,
, and
are positive integers, and
and
are relatively prime. Find
.
Q4.
The twelve letters
,
,
,
,
,
,
,
,
,
,
, and
are randomly grouped into six pairs of letters. The two letters in each pair are placed next to each other in alphabetical order to form six two-letter words, and then those six words are listed alphabetically. For example, a possible result is
,
,
,
,
,
. The probability that the last word listed contains
is
, where
and
are relatively prime positive integers. Find
.