Weekly Contest #90

(Ended)

Standings

Q1.

Regular polygons with $5,6,7,$ and $8$ sides are inscribed in the same circle. No two of the polygons share a vertex, and no three of their sides intersect at a common point. At how many points inside the circle do two of their sides intersect?

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Combinatorics

Q2.

Eight circles of radius $34$ are sequentially tangent, and two of the circles are tangent to $AB$ and $BC$ of triangle $ABC$, respectively. $2024$ circles of radius $1$ can be arranged in the same manner. The inradius of triangle $ABC$ can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

[asy] pair A = (2,1); pair B = (0,0); pair C = (3,0); dot(A^^B^^C); label("$A$", A, N); label("$B$", B, S); label("$C$", C, S); draw(A--B--C--cycle); for(real i=0.62; i<2.7; i+=0.29){ draw(circle((i,0.145), 0.145)); } [/asy]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Geometry

Q3.

Consider the paths of length $16$ that follow the lines from the lower left corner to the upper right corner on an $8\times 8$ grid. Find the number of such paths that change direction exactly four times, as in the examples shown below.

[asy] size(10cm); usepackage("tikz");label("\begin{tikzpicture}[scale=.5]\draw(0,0)grid(8,8);\draw[line width=2,red](0,0)--(2,0)--(2,3)--(5,3)--(5,8)--(8,8);\end{tikzpicture}",origin); label("\begin{tikzpicture}[scale=.5]\draw(0,0)grid(8,8);\draw[line width=2,red](0,0)--(0,3)--(3,3)--(3,5)--(8,5)--(8,8);\end{tikzpicture}",E); [/asy]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Combinatorics

Q4.

There exist real numbers $x$ and $y$, both greater than 1, such that $\log_x\left(y^x\right)=\log_y\left(x^{4y}\right)=10$. Find $xy$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra