Question Details

Question No: 218

Let $ABCD$ be a tetrahedron such that $AB=CD= \sqrt{41}$$AC=BD= \sqrt{80}$, and $BC=AD= \sqrt{89}$. There exists a point $I$ inside the tetrahedron such that the distances from $I$ to each of the faces of the tetrahedron are all equal. This distance can be written in the form $\frac{m \sqrt n}{p}$, where $m$$n$, and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime. Find $m+n+p$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Geometry