Question Details

Question No: 243

Find the number of positive integers $n$ less than $1000$ for which there exists a positive real number $x$ such that $n=x\lfloor x \rfloor$.

Note: $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra