Question Details

Question No: 296

Let $z=a+bi$ be the complex number with $\vert z \vert = 5$ and $b > 0$ such that the distance between $(1+2i)z^3$ and $z^5$ is maximized, and let $z^4 = c+di$. Find $c+d$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Combinatorics Probability