Question Details

Question No: 331

Let $N$ denote the number of ordered triples of positive integers $(a, b, c)$ such that $a, b, c \leq 3^6$ and $a^3 + b^3 + c^3$ is a multiple of $3^7$. Find the remainder when $N$ is divided by $1000$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Combinatorics