Question Details

Question No: 336

The parabola with equation $y = x^2 - 4$ is rotated $60^\circ$ counterclockwise around the origin. The unique point in the fourth quadrant where the original parabola and its image intersect has $y$-coordinate $\frac{a - \sqrt{b}}{c}$, where $a$$b$, and $c$ are positive integers, and $a$ and $c$ are relatively prime. Find $a + b + c$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra Geometry