Question Details

Question No: 341

There exists a unique positive integer $a$ for which the sum

\[U=\sum_{n=1}^{2023}\left\lfloor\dfrac{n^{2}-na}{5}\right\rfloor\]

is an integer strictly between $-1000$ and $1000$. For that unique $a$, find $a+U$.

(Note that $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x$.)

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra