Question No: 359
Equilateral triangle
has side length
. Point
lies on the same side of line
as
such that
. The line
through
parallel to line
intersects sides
and
at points
and
, respectively. Point
lies on
such that
is between
and
,
is isosceles, and the ratio of the area of
to the area of
is
. Find
.![[asy] pair A,B,C,D,E,F,G; B=origin; A=5*dir(60); C=(5,0); E=0.6*A+0.4*B; F=0.6*A+0.4*C; G=rotate(240,F)*A; D=extension(E,F,B,dir(90)); draw(D--G--A,grey); draw(B--0.5*A+rotate(60,B)*A*0.5,grey); draw(A--B--C--cycle,linewidth(1.5)); dot(A^^B^^C^^D^^E^^F^^G); label("$A$",A,dir(90)); label("$B$",B,dir(225)); label("$C$",C,dir(-45)); label("$D$",D,dir(180)); label("$E$",E,dir(-45)); label("$F$",F,dir(225)); label("$G$",G,dir(0)); label("$\ell$",midpoint(E--F),dir(90)); [/asy]](https://latex.artofproblemsolving.com/7/1/5/7154e7a32b3eda0a8ba22787a8b4d10ba8b8dc50.png)