Question Details

Question No: 403

here are $8!= 40320$ eight-digit positive integers that use each of the digits $1, 2, 3, 4, 5, 6, 7, 8$ exactly once. Let $N$ be the number of these integers that are divisible by $22$. Find the difference between $N$ and $2025$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Combinatorics Number Theory