Question Details

Question No: 419

Alice and Bob play the following game. A stack of $n$ tokens lies before them. The players take turns with Alice going first. On each turn, the player removes either $1$ token or $4$ tokens from the stack. Whoever removes the last token wins. Find the number of positive integers $n$ less than or equal to $2024$ for which there exists a strategy for Bob that guarantees that Bob will win the game regardless of Alice's play.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Combinatorics