Question Details

Question No: 424

Let $\triangle ABC$ have side lengths $AB=5$$BC=9$$CA=10$. The tangents to circumcircle of $\triangle ABC$ at $B$ and $C$ intersect at point $D$, and $\overline{AD}$ intersects the circumcircle at $P \neq A$. The length of $AP$ is equal to $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers. Find $m + n$.

Diagram

[asy] import olympiad;  unitsize(15);  pair A, B, C, D, E, F, P, O;  C = origin; A = (10,0); B = (7.8, 4.4899); draw(A--B--C--cycle); draw(A..B..C..cycle, red+dotted);  O = circumcenter(A, B, C);  E = rotate(90,B) * (O); F = rotate(90,C) * (O);  D = IP(B..E + (B-E)*4, C..F + (C-F)*-3);  draw(B--D--C--D--A);  P = IP(D..A, A..B..C);  dot(A); dot(B); dot(C); dot(D); dot(P); label("$A$", A, dir(335)); label("$B$", B, dir(65)); label("$C$", C, dir(200)); label("$D$", D, dir(135)); label("$P$", P, dir(235)); [/asy]

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Geometry