Question Details

Question No: 433

For $n$ a positive integer, let $R(n)$ be the sum of the remainders when $n$ is divided by $2$$3$$4$$5$$6$$7$$8$$9$, and $10$. For example, $R(15) = 1+0+3+0+3+1+7+6+5=26$. How many two-digit positive integers $n$ satisfy $R(n) = R(n+1)\,?$

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Number Theory