Question Details

Question No: 445

Let $a, b, c,$ and $d$ be real numbers that satisfy the system of equations

 

\begin{align*} a + b &= -3, \\ ab + bc + ca &= -4, \\ abc + bcd + cda + dab &= 14, \\ abcd &= 30. \end{align*}

 

 

There exist relatively prime positive integers $m$ and $n$ such that

 

\[a^2 + b^2 + c^2 + d^2 = \frac{m}{n}.\]

Find $m + n$.

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Algebra