Question Details

Question No: 446

For each positive integer, $n$ let $a_n$ be the least positive integer multiple of $23$ such that $a_n \equiv 1 \pmod{2^n}.$ Find the number of positive integers $n$ less than or equal to $1000$ that satisfy $a_n = a_{n+1}.$

Answer must be a floating-point or integer value and precision error less than 10^-6 is allowed.


Editorial
Tags: Number Theory